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J\ stationary thin-orbiting accretion disk surrounding a black-hole has been studied 
taking the pressure gradient force into account. \Ve have found that under the condition 
appropriate for a binary X-ray source, with usual assumptions about viscous stress, the disk 
is largely modified when the pressure gradient force is taken into account. Therefore, cur-
rent thin-disk models to account for observations of Cyg X-1 arc self-inconsistent, since the 
pressure gradient force is neglected in those accretion disk moclels. 

§ l. Introduction 

A nur;1ber of accretion disk modelsn, cl have been proposed to account for 
observational properties of Cyg X-1, such as the emission of a power law spectrum 
of X-rays extending to hard X-ray range, time variations in X-ray inteDsity partic-
ulctrly as short as a few milliseconds and the existe•1ce of bimodal states observed 
as a major decrease (and following increase) of X-ray emission in Ke V range. 
The structures of those accretion disks hil \'e all calculated on the basis of 
the "standard accretion disk model" (hccreafter referred to as SADM), One of 
the main assumptions in SADl'vf is that azimuthal motion of accretion disk matter 
is replaced by Keplerian motion, that is, the pressure gradient force is ignored 
in the equation of motion. In the solution obtained from SADM \Ve see that the 
neglect of the pressure gradient force is valid only i£ the geometric thickness of 
the accretion disk is sufficiently thin. 

Recently, one of the authors (N.S.) has prepared the numerical code to solve 
detailed structures of accretion disks. 'vV e have found that preliminary numerical 
calculations do not reproduce the re:mlt derived from SADM even for a sufficiently 
thin accretion disk. Both numerical calculation and our anctlysis concerning an 
accretion disk dominated by gas pressure indicate that the pressure gradient force 
in the equation of motion couples to the viscous stress based on the ct-model and 
alters the structure of the disk completely. In order to show that this new result 
is not clue to an artifact of our numerical code, we will discuss in § 4, by means of 
an analytic manner, the reason \vhy SADM becomes invalid, for the pct rticular 
example of an optically thick accretion disk dominated by gas pressure. 

Most of equations used in the present paper have been derived in our previous 
paper. 3J Basic equations and necessary physical data will be prepared in § 2. The 
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physical parameters of the disk based on SADM will be briefly discussed in § 3. 
In § 4 the structure of the disk with the pressure gradient force will be discussed 
for an optically thick and gas pressure dominant case. 

§ 2. Basic equations 

To describe axisymmetric disk configuration of an accretion disk, we employ a 
cylindrical system of coordinate (r, cp, z) with the z-axis chosen as the axis of 
rotation. Let the mass of the central black-hole and the accretion rate be l'vf and 
M. Conservation laws of mass, momentum and energy are 

(1) 

dv, v.,2 Gl'VJ 1 dW v,-----= -------, 
dr r r 2 S dr 

(2) 

(3) 

d {M. ( r W 1 2 1 2 GM) 2 _2TV n} 2 -E O -- -----+-v, +-v, --- + 'lrl v '"'"(i - 'lrl R= , dr r-1 s 2 2 r 
(4) 

where S, W, w,"' and ER are the density, pressure, viscous stress and energy loss 
rate integrated over the z-coordinate, respectively. For example, S is given by 
2H' p dz, where z 0 is the thickness of the disk from the equatorial plane to the 
surface. The inward radial velocity and the azimuthal one are denoted by v, and 
vP !2 the angular velocity and r the ratio of specific heats. In addition to the 
above equations, we have an equation which describes hydrostatic balance of disk 
matter along the z-coordinate. In terms of a polytropic assumption which connects 
pressure and density along the z-coordinate, vertical distribution of disk matter 
is solved analytically, from which one can calculate vertically integrated quantities, 
S, W, TV, 9 and ER. Another important relation derived is3l 

where 

w 
s 

I(N+ 1) GM(z0 ) 2 _ AGM(z0 ) 2 

2l(N)(N+1) r r r r 

l(N) = (2NN!) 2/ (2N + 1)!, 

and N is the polytropic index defined by P=Kp1+11N. 

(5) 

(6) 

Since we are of special interest in an optically thick disk dominated by gas 
pressure, the integrated viscous stress and energy loss rate are writtens as 3J 

W = 2a (G lt£) -1J2 dQ 
'" 3 r dr ' 

(7) 
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I(N + 1) (mn) 4 (GM) 5 (z0 )
10 __1__' 

3tc (N+1Y 2k r r W 
(8) 

where mH is the proton mass, /C the opacity which is, hereafter, assumed to be 
constant and a is so-called a-parameter believed to lie between 10-3 to 1. Recent-
ly, Ichimaru2l.•l has developed a theory of hydrodynamic turbulence and has derived 
an explicit formulation of viscous stress. In the case where the gas pressure 
prevails in the accretion disk, Ichimaru's formula reduces to Eq. (7) and a is 
determined to be rv2/33) though it depends weakly on the polytropic index N. 

§ 3. Standard accretion disk model 

Before discussing the effect of the pressure gradient force on the structure 
of the accretion disk, let us briefly consider the disk structure determined from 
SADM. In SADM the first term and the pressure gradient term (last term) 
are ignored in Eq. (2), that is, Keplerian motion is assumed for azimuthal velocity. 
Furthermore, SADM neglects the first two terms in Eq. ( 4). It can be shown 
that these approximations are justified if the disk in question is geometrically thin, 
z 0/r{::l. Under the SADM approximation basic equations, Eqs. (1) rv ( 4), are 
reduced to a set of algebraic equations, since Eq. (3) can easily be integrated 
(integration constant is put to zero). The solution to these algebraic equations is 

TTT - 1 M. (G M) 112 _-1 fV SD___ -- 1 • 
2na r 

v = aJ(N+l) ('z0 ) 2 ('GM) 1/ 2 

r,sD 2(N+ 1)J(N) r r ' 

(Zo) = { 18 IC JN+1Y (__!__) 4J1P(GM)-7f2rlf2}1;to, 
r sD an2 ac I(N + 1) mn 

where suffix SD refers to SADM. In terms of Eqs. (9) and (11), 
evaluate the correction to v 9 ignored in SADM, 

(9) 

(10) 

(11) 

one can 

(12) 

Clearly from Eq. (12), SADM approximation seems to be justified, if z 0/r{::l 1s 
fulfilled throughout all domains of the accretion disk. However, as will be dis-
cussed in the next section, even in an accretion disk fully satisfying the condition 
Zo/r{::1, the azimuthal velocity V;p as well as the pressure vV deviates largely from 
Keplerian motion and 1VsD, respectively. 

§ 4. Effect of the pressure gradient force 

In order to present calculations in a more succinct way, we introduce non-
dimensional variables, 
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(13) 

which describe the deviations from SADM. In the following, basic equations are 
expressed in terms off, g and y(=z0/r). With the aid of Eqs. (1), (5) and (13), 
the radial velocity can be written as 

( GM)lf2 
Vr=aA -- y 2g, 

r 
(14) 

where A has been defined in Eq. (5), and the basic equations can be written as 

dlnf (16) 
d lnr 2 

In deriving Eq. (16), Eq. (3) has been integrated and the integration constant 
has been put to zero (as for the details see our previous paper3l). The conserva-
tion law of energy is written as 

where YsD = (z0/r)sD· The structure of the accretion disk is to be calculated from 
Eqs. (15), (16) and (17) with appropriate boundary conditions at the outer edge 
of the disk. 

In order to demonstrate that SADl\1 approximation is not valid eYen for geo-
metrically thin accretion disk, let us consider a sufficiently thin accretion disk. In 
such a disk without changing essential nature of basic equations, we can neglect the 
y 2 and y 4 terms in the brackets of Eq. (15) and the first two terms in Eq. (17). 
The y 4 term in Eq. (15) is to shift slightly the zero-point of the derivative. The 
y 2 term in the demoninator plays an in1portant contribution only if a 2 Ay2g2<':1, that 
is, if gocy- 1)>1. Since we are interested in f and gin ranges not much different from 
unity, the neglect of these terms gives rise to no serious error. It is noted that the 
above approximations are equivalent to neglect the Vr term in Eqs. (2) and ( 4) 
and the first term in Eq. ( 4), i.e., the term referred to the internal energy plus 
work done by pressure. Consequently, from Eq. (17) y can be solved as 

{ 2 1-P 2} lflo 
Y=YsD- --+f 

3 g 
(18) 

In relevant ranges of M and a, y is of order 10-1"--' 10-2, that confirms the thin 
disk approximation. Furthermore, Eq. (18) indicates that y is a slowly varying 
function of r, f and g, so that y can practically be put to a constant, since such 
an approximation does not alter the general property of Eqs. (15) and (16). 
Equations (15) and (16) are combined to give 
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dlng __ 1_ 
dlnf 3A y 2 1-g 1-g 

By virtue of y = const., Eq. (19) is solved as 

lng-g+--f-- -----1 lnf=C 1 1' (2 1 ) 
3.!1 :l 3A y 2 ' 

\vhere C is the integration constant. 
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(19) 

(20) 

Solutions to Eq. (19) arc characterized by C as shown in Fig. 1. In Fig. 1 
we tentatively assume y = 10- 1 and 1V = 3 for the polytropic index. As seen from 
Fig. 1 solutions to Eq. (19) are classified into two families \vhether the constant 
C is larger than the critical value given by 

(21) 

or not. It is to be noticecJ that none of these solutions converges toward g = 1 
and f=l (to,.vard SADM approximation) or approaches in the vicinity of g=f=1 
except for one special solution, g=l andf=vl-=3Ay'/2. This is nothing but the 
solution to SADM taking into account the y' term (see Eq. (12)). However, if bound-

1.1 

1.0-

0.85 0.9 0 95 1.0 

g 

q vary along the direction inclicatecl. 
Fig. 2. Changes of q and f as a function of radial distance r. These two curves belong the 

same value of C but start with different boundary conditions at the outer edge of the 
disk The starting points of these two solutions are indicated in Fig. 1 by (a) and 
(b) on the curve with C=298.99. In the Figure the radial distance is normalized by 
the radius of the outer edge, r,. The gradient of q becomes increasingly large at 
r=0.845r, and 0.905r,. Boundary values off and qat r=r, are; fi,=0.99, q,=l.l45 for 
the curve a, fi,=0.97, g,=2.401 for the curve b. 
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ary values of g and f at the outer edge of the disk differ infinitesimally from the 
above values, the solution never converges to SADM. 

In Fig. 2 we plot two different solutions of f and g as functions of r for the 
case of the same C( = 298.99) but different boundary values f and gat the outer 
edge of the disk. Since Eq. (15) is proportional to y- 2 , the variation of g is 
extremely large as compared with that of f. This means that the azimuthal veloc-
ity is nearly Keplerian but the pressure differs largely from that of SADM. Ex-
treme growth of g prevents further inward numerical integration beyond r = 0.845 rb 
and 0. 905 rb (where r0 denotes the outer edge of the disk). 

§ 5. Concluding remarks 

In the preceding section we have found that none of solutions fulfills SADM 
approximation except for the special solution, g=1 andf= .J1-3Ay2/2. In deriv-
ing the above conclusion we have used several approximations. However, in the 
ranges off and g illustrated in Fig. 1, we can easily verify that original equations 
(15), (16) and (17), provide no new result other than shown in § 4. 

According to Shibazaki, preliminary numerical calculations indicate that opti-
cally thick accretion disks dominated by radiation pressure also provide the same 
property as that of the present analysis. One of main causes lies in the viscous 
stress adopted in the present paper, which is proportional to the pressure "Vas m 
Eq. (7). In terms of Eqs. (5) and (7), Eqs. (2) and (3) can be written as 

dln W =-1-(v//GM _ 1), 
d ln r Ay2 r 

(22) 

(23) 

where we have neglected the first term of Eq. (2). Consider the case that V 9 2 

is slightly larger than GM/r, then, according to Eq. (22) a considerable amount of 
pressure gradient is required, since y-2,1, which gives rise to decrease of pressure 
at an adjacent inner zone of the disk. From Eq. (23) the decrement of pressure 
results in a larger at that zone. A larger results in a further smaller 
pressure at an inner zone. If the viscous stress were proportional to, for example, 
vV-\ contrary to the case discussed above, solutions converge toward g = f= 1. 

In the present paper, we have failed to solve a complete structure of a 
stationary accretion disk extending into the vicinity of the black hole. It is uncer-
tain, however, whether stationary accretion disks are theoretically possible or not, 
since only limited attempts have been made to find solutions to basic equations 
discussed. If exists, its structure may distinctly be different from that of SADM. 
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