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The structure of a stationary accretion disk surrounding a black hole is studied by means 
of newly developed basic equations. The basic equations are derived under the assumption 
that the vertical distribution of disk matter is given by a polytrope. For a Keplerian accre-
tion disk, basic equations reduce to a differential equation of the first order. We have found 
that solutions of an optically thick accretion disk converge to a limiting value, irrespective 
of the outer boundary condition. This gives the happy consequence that the inner structure 
of an optically thick accretion disk is determined irrespective of the outer boundary condition. 
On the contrary, an optically thin accretion disk shows bimodal behavior, that is, two 
physically distinct states exist depending on the outer boundary condition imposed at the 
outer edge of the accretion disk. 

§I. Introduction 

Following the pioneer work by Pringle and Rees,D and Shakura and Sunyaev,2> 
a number of theories3>,<> based on a standard accretion disk model have been 
developed to account for X-ray observations of Cyg X-1. The standard treatment 
assumes viscous stress to be proportional to the gas or the radiation pressure, i.e., 
Pr<p= -aPg or -aPr (called the a-model). Recently, Ichimaru5> has developed 
a theory of magneto-hydrodynamic turbulence and has formulated viscous stress 
arising from turbulent magnetic :fields which are generated by differential rotation 
of disk matter. In particular, the new formulation reduces to the a-model if the 
gas pressure dominates the radiation pressure. The a-parameter determined from 
the new formulation is about 2/3. 

The radial structure of a stationary accretion disk is governed by :five basic 
equations that describe conservation laws of mass, momentum (radial, azimuthal 
and vertical components) and energy, respectively. In the standard treatment these 
equations, except for the momentum equation of the vertical component which 
describes vertical hydrostatic balance, are usually simplified by integrating the 
equations over the vertical coordinate. Integrations are sometimes replaced by 
(corresponding mean value X thickness of the disk), which gives rise to unneces-
sary uncertainties in the basic equations. In order to get rid of those uncertainties 
we introduce a concept of polytrope about the vertical distribution .of accretion 
disk matter. With the aid of the polytrope we formulate the basic equations that 
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are free from uncertainties arising from the above integrations. 
The standard accretion disk model assumes Keplerian motion for accretion 

disk matter. Furthermore, the change of the internal energy and work done by 

pressure are ignored in the energy equation. In §§ 3rv5, we examine the behavior 

of the terms neglected in the standard accretion model. If we assume a Keplerian 
accretion disk, basic equations reduce to a differential equation of the first order. We 
have found that solutions of an optically thick accretion disk, when numerical 
calculation is carried out inward from the outer edge of the disk, have converged 

to a limiting value, irrespective of the boundary condition. It is also shown that 
the result due to the standard model calculation coincides with the above limiting 
value. If the disk is geometrically thick, however, our limiting value differs from 

the standard model calculation. 
It is of special interest to apply our theory to an optically thin accretion 

disk. As has been shown by Ichimaru,6J an optically thin accretion disk shows 

bimodal behavior as will be discussed in § 5. When the physical condition of 
accreting matter near the outer edge of the disk crosses over a critical condition, 

a transition from one to other takes place. This bimodal behavior may play an 
important role to account for observations of galactic X-ray sources. However, 
in the present paper no implication between our theory and observations has been 

made, which will be discussed in near future. 

§ 2. Basic equations 

This chapter is devoted to the derivation of a set of basic equations that 

governs the radial structure of a stationary accretion disk. This can be achieved 
when the vertical structure of the accretion disk has been solved beforehand. 

However, the complete determination of the vertical structure requires knowledge 
about vertical energy flow as a function of the vertical coordinate. In order to 
derive the energy flow, both radial and vertical structures must be solved simul-
taneously. These complications can be bypassed when we assume a polytropic 

relation connecting pressure and density in place of the exact vertical distribution 
of accretion disk matter. 

To describe an axisymmetric disk configuration of accretion matter, we employ 

a cylindrical system of coordinate (r, r.p, z) with the z-axis chosen as the axis of 
rotation. Hydrostatic balance of one gram of disk matter at a radial distance r 
from the center and at a vertical distance z from the equatorial plane is given by 

dP GM z -=---P 
dz r 2 r ' 

(1) 

where P and p are the pressure and density, and M the mass of the central star. 
In deriving Eq. (1) the z-component of gravity due to the central star has been 

approximated by GMz/r3• The solution of Eq. (1) is given by 
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K(1+N)plfN = _ ( ;)l (2) 

where we have used the polytropic relation given by P=Kpi+IIN and z 0 is the 
thickness of the disk from the equatorial plane to the surface. Here, the surface 
of the disk is defined as a plane at which both the pressure and density reduce 
asymptotically to zero. Introducing non-dimensional variables 

(J = PI Po , = Z I Zo , (3) 
we have from Eq. (2), 

(4) 
and at the equatorial plane we have 

K (1 + N) PolfN = (1 + N) Po= GJYJ (zo) 2' 

Po 2r r 
(5) 

where P0 and Po are the pressure and density at the equatorial plane respectively. 
In terms of Eq. ( 4) one can integrate the density, pressure, viscous stress Pr9 

and energy loss rate eR over the vertical coordinate z, 

where 

W = r:,Pdz=2P0z 0I(N+ 1), 

= l 
ER= Jz' eR dz, 

-z, 

(Explicit expressions will be giVen later.) 

I(N) = (2NN!)2 . 
(2N+1)! 

(6) 

(7) 

In terms of Eq. (6) we can write down a set of basic equations which governs 
the radial structure of the accretion disk. Conservation laws of mass, angular 
momentum and energy read 

2-rrrvrS=M, (8) 

S (vr dvr _ v/) = _ GM S- dW, (9) 
dr r r 2 dr 
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where M IS the accretion rate, Vr the inward radial velocity, v 9 the azimuthal 
velocity, Q the angular velocity and r the ratio of specific heats, respectively. 
The first term of Eq. (11) refers to the change of the internal energy plus work 
done by pressure, and the fifth term represents the rate of energy transported 
across radius r by the viscous stress. 

Recently, Ichimaru has developed a theory of magneto-hydrodynamic turbulence 
appropriate to plasmas in an accretion disk geometry and has derived the following 
formula for the viscous stress, 51 

_ (2)3;2 (kT)1;2 Vr-- P-- l, 
7r mu 

(12) 

where mu is the proton mass and l the effective thickness of the disk. When 
the gas pressure P9 dominates the radiation pressure Pr, Eq. (12) reduces to 

where 

J(N)= (2N+2)!_ n 
2'N+ 2 (N + 1) !2 2 

(13) 

(14) 

In deriving Eq. (13) the equation of state, P9 = (21</mu)PT, appropriate to a fully 
ionized hydrogen gas has been used, and the effective thickness l in Eq. (12) is 
put equal to z 0 • When Keplerian motion prevails in the accretion disk, Eq. (13) 
can be written in a more simple form, 

(15) 

A number of attempts have been made to formulate the viscous stress in the 
theory of accretion disks. The essence of those theories is the a-model in which 
one assume the viscous stress to be proportional to the gas or radiation pressure, 
i.e., Pr9 = -aP9 or Pr9 = -aPr. The constant a has been believed to lie between 
10-3 and 1. According to the a-model the integrated viscous stress can be written 
as 

(16) 

Equations (15) and (16) g1ve 

a= 1_ s;2 J N)lf2_ . 
4 n I(N+ 1) 

(17) 

The v1scous stress, Eq. (12), reduces to the a-model provided that the gas pressure 
dominates the radiation pressure and Keplerian motion prevails in the accretion 
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disk. The constant a depends weakly on the polytropic index Nand is nearly 2/3. 
When the radiation pressure dominates the gas pressure the integrated viscous 

stress is written as 

where 

K(N) =vnT(9(N+1) /8)/T(9(N+1)/8+1/2). (19) 

If Keplerian angular velocity is assumed in Eq. (18), we have 

for Pro>Pgo· (20) 
4 7C Pro 

Equation (20) differs distinctly from the a-model, i.e., = - 2ai(N + 1) ProZo. 
Comparing Eq. (20) with Eq. (16) one can see that the parameter a is propor-
tional to the root of the ratio of pressures, .J Pgo/ Pro, which is much smaller than 
unity, since Pgo<..Pro· 

The explicit expression for the integrated energy loss rate ER depends on 
whether the accretion disk is optically thick or not. For an optically thin disk 
ER is given by the rate of free-free emission, Cff = c0pT112, integrated over the z-
coordinate, 

(21) 

where T 0 is the temperature at the equatorial plane. 
In the optically thick limit ER is given by outward energy flux across unit 

area of the disk surface, 

ER= _ 2 (4acT 3 dT) 
31Cp dz surface ' 

(22) 

where JC is the opacity. If the radiation pressure dominates, Eq. (22) can be 
written as 

smce P=aT4/3 then (4/3)aT3dTjdz=dPjdz= -GMpz0/r3• In a gas pressure 
dominant disk Eq. (22) reduces to 

where the opacity JC 1s assumed to be a constant. In order that Eq. (24) takes 
a finite and almost constant value near the surface layers of the disk, the polytropic 
index N must be 3 at these layers. This situation is quite analogous to the case 
of ordinary stellar surfaces. The emission rate is then given by 
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ER = 16 acT04 • 

3 ICPoZo 
(25) 

§ 3. Optically thick and radiation pressure dominant accretion disk 

In this and following chapters basic properties of accretion disks as well as 
their radial structures are inquired using the basic equations derived in § 2. In 
order to understand the essential features of accretion disks and especially to 
compare our result with those of other theories based on the standard accretion 
disk model, we have made the following simplification. (1) The radial velocity 
of disk matter is neglected compared with the azimuthal velocity and (2) the pressure 
gradient term in Eq. (9) is neglected compared with the gravity term. This simpli-
fication is equivalent to assume Keplerian motion for accretion disk matter, that is, 
Eq. (9) reduces to 

On the other hand, Eq. (10) can easily be integrated to give 

l'li£ rv, = - 2TCr2 vVr, +C. 

(26) 

(27) 

The constant C refers to the rate at which angular momentum deposits in the 
central star when the disk surrounds a star such as a neutron star or a white 
dwarf. In the case of accretion onto a black hole we may take r 1 = 6Glvfj c2 as 
the inner radius of Newtonian accretion disk. Since the motion of disk matter 
acquires a radial character irrespective of the transport of angular momentum at 
the domain inside we may put 1Vr, = 0 at r = r 1 • Then, the constant C is 
determined as M (rv,) This can practically be neglected compared to other 
terms in Eq. (27) as far as sufficiently outer domains of the disk are concerned. 
In the following discussion we set C = 0. 

Eliminating 1Vr, in Eq. (11) with the aid of Eq. (27) \Ve have 

M__!__{_r_ W _1_ GM} -2nrER=O. 
dr r-1 s 2 r 

In terms of Eqs. (5), (6) and (23), Eq. (28) can be rewritten as 

where 

__!__(z0 )
2 _l_(z0J2+_3 _ 4TCc.---(z") =O, 

dr r r r ' 2Ar AteM r 

A=_r_ 1 J(N+1) 
r-12(N+1) J(N) 

Changing variables to the following non-dimensional ones, 

y= 
4TCc x=- -.-r, 

A1cM 

(28) 

(29) 

(30) 

(31) 
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Eq. (29) reduces to a simple differential equation, 

dy2 y 2 3 1 ----+- --y-0. 
dx x 2A x 

(32) 

In deriving the above equation the opacity /C is assumed to be constant, that is, 
the opacity is assumed to be mainly due to electron scattering. 

In the limit of geometrically thin disk configuration Y 2 terms in Eq. (32) 
can be negligible, and the Oth order solution of Eq. (32) is Y = 3/2Ax. Evaluating 
the correction due to y 2 terms, y can be written as a power series of x, 

y=-3--3(-3-)3 + .... 
2Ax 2Ax 

(33) 

The first term of this solution 
refers just to the result derived 
from standard model calcula-
tion. The result of numerical 
calculation is shown in Fig. 
1. In solving Eq. (32) the 
polytropic index is put tenta-
tively to N = 3 and the mass 
of the central black hole is 
taken to be 10.A10 . The dot-
ted curve plots the first term 
in Eq. (33) and the solid 
curve (a) refers to a solution 
to Eq. (32) solved inward 
with a boundary condition 
y=3/2Ax at x::}>l. The 
difference between these two 
curves is rather small in the 
domain x >5. Deviation is 
appreciable in the domain x 

1.0 

0.5 

(c) 

0 

Fig. 1. Solutions of an optically thick and radiation pressure 
dominant accretion disk. The mass of the central black 
hole and the polytropic index are tentatively put to 10 M0 
and 3, respectively. Solid curves indicate solutions of 
Eq. (32) solved inward with different boundary conditions. 
The first term in Eq. (32) is plotted by the dashed curve. 

<5, where y becomes larger than 1/2, that is, the accretion 
siderably in the domain x<5. 

disk expands con-

The most remarkable behavior of solutions is shown in Fig. 1 by curves 
(b) and (c). The curve (b) plots y solved inward from x = 10 with a boundary 
condition which is chosen just twice the value given by the curve (a) at x = 10. 
However, the solution quickly converges to the curve (a) as is shown in Fig. 1. 
The same is true for the curve (c) where a smaller value of y is imposed as the 
boundary condition. This behavior is easily understood when we examine the sign 
of the derivative, dy / dx. It takes a positive value in the domain above the locus, 
y= (Vx2 +6/A-x)j2, which runs just above the curve (a). It takes a negative 
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value m the domain below this curve. Consequently, any solution solved inward 
with an arbitrary boundary condition strongly converges toward a finite limiting 
value. This strong convergence has the happy consequence that two solutions 
fulfilling different outer boundary conditions approach the same solution at the 
inner domain of the disk. 

The solution y combined with Eqs. (5), (20) and (27) determines disk param-
eters such as P0, p0, T 0 etc. After some tedious calculations, the disk parameters 
can be given by 

(34) 

( k \ -•;9 ( 3 ) -1;9 (GM) -1!9 ( ) -2 Po=2(1+N)P(N) mHJ -;; !VJs;9 --;- r-16f9, (35) 

(36) 

where 

{ 1 ( n ' 1!2 1 } s;9 
P(N)= 6 2) (1+N)K(N) (37) 

The radial velocity of disk matter can be determined with the aid of Eqs. (8) 
and (35) as 

{ 1 } (P )1;2(z )2 
v,= 16n(1+NYI2J(N)P(Ny;s ;,0° ; v.,. (38) 

Since the bracketed term is of order 0.1 and, furthermore, Pyo/ P,0 <1 holds in 
the radiation pressure dominant disk, the radial velocity can be shown to be negli-
gibly small compared tD the azimuthal velocity. This guarantees the assumption 
(1), made in the beginning of this chapter, through full domains of the radiation 
pressure dominant disk. 

The above calculations can also be applied to the a-model. Since Eq. (32) 
has been derived irrespective of the viscous stress, the same thickness z 0 can be 
used to derive disk parameters appropriate to the a-model. The explicit formula 
for the viscous stress, W,"'= -2al(N+1)P,0z0, is required when we wish to 
determine disk parameters. From Eqs. (5), (16) and (27), we have, 

M (GM) 112 (z )-1 

Po= 4na1(1+N) --;- ; r-2
' 

(39) 

_ (1+N)M _2 Po- -- - r , 
2na1(1+N) r r 

(40) 

Nf1!4 (3)1;4(GM)1;s(z )-1;4 _ To= - -- 2 r 1f2' 
{4na1(1+N)V14 a r r 

(41) 
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v = J_(N + 1) (Zo)2v . (42) 
r 2 (1 + N) I (N) r 

In terms of disk parameters derived 
above, we can examine domains in which 
the radiation pressure dominates the gas 
pressure and vice versa. In Fig. 2 the 
radial distance at the boundary between 
the radiation pressure dominated domain 
and the gas pressure dominated one is 
plotted as a function of the accretion rate. 
The radiation pressure dominates in the 
inner domain of the accretion disk. In 
further inner domain the difference of 
z 0 between our result and the standard 
model calculation becomes considerable as 
is seen from solutions plotted in Fig. 1. 
The hatched domain in Fig. 2 indicates 
that the deviation of z 0 from the standard 
model calculation amounts more than 20 
%. In Fig. 2 we also plot the so-called 
critical accretion given by M = 24rrGl'vf/!Cc. 

M (gm/sec) 
I 

10 10 

I 0 1'1-::-------__j_--,--_____ ___!_,...--__ ___j 

107 108 109 1010 
r (em) 

Fig. 2. The boundary at which the radiation 
pressure equals the gas pressure for an 
optically thick accretion disk. In the 
hatched domain the difference of zo be-
tween ours and standard model calculation 
amounts more than 20%. 

§ 4. Optically thick and gas pressure dominant accretion disk 

In a gas pressure dominant disk the viscous stress based on Eq. (12) reduces 
to the a-model, and one can determine a according to Eq. (17). Therefore, the 
result derived in this chapter can easily be applied to the a-model by slight 
modifications of equations. In terms of Eqs. (5) and (27) the energy loss rate, 
Eq. (25), can be written as 

. (GM) 9f2 ( ) 10 ER=E0M- 1 -r- r, (43) 

where 

(44) 

and 

W 0 = (: ) 312 (1+ NY12J(N). 
2 " 

(45) 

Inserting Eq. ( 43) into Eq. (28) and introducing non-dimensional variables 
y= (z0/r) and x= (5rrE0M-2 (Glv1) 712/2) - 2r, one can write the equation in a formula 
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which includes only one parameter N as in Eq. (32). However, smce .x takes 
a value of order for relevant ranges of M and 1\;f, it is inconvenient to 
analyse the accretion disk with these variables. 

The best way is to introduce the following non-dimensional variables, 

where 

_ {2rrE0 • b- --i\1 -- -
A c2 6 ' 

and was defined 111 Eq. (30). The basic equation Is then given by 

dy2- y2 + B - L = 0 
d.x .X .X .x3f2 ' 

1vhere 

3b2 B=-. 
2A 

(46) 

(47) 

(48) 

Since B is 10' in relevant ranges of M and 1Vf, a special solution of Eq. ( 48) can 
be approximated as 

(49) 

In practice, the second term and also higher terms are almost completely negligible. 
Therefore, the solution reduces to the standard model calculation. In fact, numer-
ical calculation shows that a solution with the boundary condition, Yb = (B2.x) 1120 

at runs closely along y= (B2.x) 1120 • The strong convergence character of 
solutions tovvard a limiting value has also preserved in the gas pressure dominant 
accretion disk. Furthermore, the y 10 term in Eq. ( 48) gives rise to a more strong 
convergence character than that of the radiation pressure dominant accretion disk. 

Disk parameters can be written by means of Eqs. (5), (15) and (27) as 

_ 1. · (GM)' 1; 2 (z0 ) P 90 ----M -- - 1 , 
2rrvVo r r 

(50) 

_ (l+N)M· Po-·--- - r , nvV0 r r 
(51) 

To=-l__ (Jnu) (GM) (.z0 )
2

, 
4(1-1-N) k r r 

(52) 

· (53) 

In Eqs. (53) if we replace vV0 by 2ai(N + 1), the result reduces to the 
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well-knmvn a-model. 

§ 5. Optically thin accretion disk 

Calculations are the same as the case of the gas pressure dominant disk. 
The energy loss rate can be written as 

(54) 

·where 

(55) 

and 1V0 has been given in Eq. ( 45). Inserting Eq. (54) into Eq. (28) and making 
use of non-dimensional variables 

with 

we have 

where 

( c2 ) x- --- r - 6GM ' 

{A . _1 (6G1\11) (c2)3;2}11s b= -(E0M) 1-- - , 
2rr \ c2 6 

3b2 

2A. 

(56) 

(57) 

(58) 

(59) 

Now, let us examme the locus of zero-derivative, dyj dx = 0, which is given fron"l 
Eq. (58) by 

(60) 

This locus is plotted in Fig. 3 by a thin solid curve, which splits the figure into 
two domains. In the middle domain the derivative is negative, while in the outer 
domain surrounding the middle domain it takes a positive value. It is to be noticed 
that the existence of these two domains is responsible to bimodal behavior of 
an optically thin accretion disk. Ichimaru has first found bimodal behavior for 
an optically thin disk. Further, he has argued implication between the bimodal 
behavior found in an optically thin disk surrounding a black hole and alternati\re 
high and low luminosity states observed in the X-ray source Cyg X-l.n 

In Fig. 3 three typical solutions for Eq. (58) are plotted by thick solid 
curves, \vhere we have tentatively assumed the outer boundary of the disk to be 
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X 10" 107 

Fig. 3. Solutions of an optically thin accretion disk. The mass of the black hole and the 
accretion rate are assumed to be 10 Me and 1017 gm/sec, respectively, and the polytropic 
index is also taken to be 3. The locus which gives the zero derivative is plotted by the 
thin solid curve. Solutions of Eq. (58) are indicated by thick solid curves. 

rb = 1013cm. This value may somewhat be large as compared to estimate from the 
size of Roche lobe in X-ray binary systems. But the essential feature of solutions 
preserves if rb is smaller than 1014cm or x<101. Let us denote two solutions to 
Eq. (60) by Ymax and Ymin ( <Ymax). Then, solutions of Eq. (58) are divided into 
two families depending on whether the boundary value of y is larger than Ymin or 
not. Solutions designated by (a) and (b) in Fig. 3, which start with boundary 
conditions larger than Ymin, converge to the limiting value Ymax· On the contrary 
if we begin with a smaller boundary value than Ymin, the thickness y of the disk 
decreases steeply as we proceed inward. As y decreases the optical thickness 
of the disk increases since the density is proportional to y- 3• Consequently, the 
disk changes gradually to an optically thick and gas pressure dominant disk con-
figuration. 

Whether accreting matter evolves into an optically thin disk or an optically 
thick disk, depends on the thickness Yb at the boundary. If Yb>Ymin accreting 
matter evolves into an optically thin disk, while an optically thick disk is formed if 
Yb<Ymin· We can rewrite this condition with a more appropriate expression by 
means of the temperature at the boundary. Before describing the condition we 
note that disk parameters for an optically thin accretion disk are given by Eqs. 
(50),...___. (53). In terms of Eq. (52) the condition is written as 

where 

(an optically thin disk) 

(an optically thick disk) 
(61) 
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Tcrit= (62) 

Suppose that accreting matter travels adiabatically from the Roche surface to the 
disk boundary in a binary X-ray source. Then, the temperature of accreting matter 
rises to 

(63) 

at the disk boundary. In terms of this Tg, Eq. (62) is written as 

Tcrit= Lc1:N) (64) 

Since (z0/r)min(=Ymin/b) is smaller than unity for x<106, Tcrit becomes smaller 
than Tg. This means that in order for accreting matter to evolve into an optically 
thick disk configuration energy loss process must operate effectively to decrease 
the temperature below Tcrit at the boundary. Otherwise, accreting matter evolves 
into an optically thin disk configuration. 

§ 6. Concluding remarks 

We have, so far, examined radial structures of accretion disks by means of 
basic equations we have developed in § 2. We find that the radial structure of 
an optically thick disk converges, irrespective of the outer boundary condition, 
to the limiting value given by the standard model calculation. However, in the 
radiation pressure dominant disk with a relatively intense M the difference of the 
structure is appreciable between our calculation and the standard model calculation. 

On the other hand, the optically thin accretion disk shows in particular bimodal 
behavior as has been discussed in § 5. The implication between such bimodal 
behavior and the observed nature of galactic X-ray sources has not been discussed 
in this paper. As has been proposed by Ichimaru, such a bimodal transition may 
produce alternative high and low luminosity states observed in Cyg X-1. The 
bimodal behavior also predicts that there exists X-ray 
in the optically thin state or the optically thick state. 
Sco X-1, may always stay in the optically thin state. 

sourses which always stay 
The famous X-ray source, 

We are interested in the structure of an geometrically thick accretion disk. 
The optically thin disk and the optically thick and radiation pressure dominant 
disk with a relatively large M fall to this category. In geometrically thick accre-
tion disks the azimuthal velocity cannot be approximated by Keplerian velocity. 
In terms of Eq. (50) we can calculate the pressure gradient term in Eq. (9) 
and the azimuthal velocity is modified as 

v = J(N+1) (z0 )2}1J2(GM)lf2 
"' 4 I(N)(N+1) r r 

(65) 
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One can see that as z0/r increases decreases according to Eq. (65). The disk 
approaches such a configuration that gravity due to the central star balances the 
pressure gradient force, instead of the centrifugal force. The structure may dis-
tinctly differ from the standard model calculation. 
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